Selective enrichment of endogenous peptides by chemically modified porous nanoparticles for peptidome analysis.

نویسندگان

  • Ruijun Tian
  • Lianbing Ren
  • Huaijun Ma
  • Xin Li
  • Lianghai Hu
  • Mingliang Ye
  • Ren'an Wu
  • Zhijian Tian
  • Zhen Liu
  • Hanfa Zou
چکیده

We report the development of a combined strategy for high capacity, comprehensive enrichment of endogenous peptide from complex biological samples at natural pH condition. MCM-41 nanoparticles with highly ordered nanoscale pores (i.e. 4.8nm) and high-surface area (i.e. 751m(2)/g) were synthesized and modified with strong cation-exchange (SCX-MCM-41) and strong anion-exchange (SAX-MCM-41) groups. The modified nanoparticles demonstrated good size-exclusion effect for the adsorption of standard protein lysozyme with molecular weight (MW) of ca. 15kDa; and the peptides with MW lower than this value can be well adsorbed. Step elution of the enriched peptides with five salt concentrations presented that both modified nanoparticles have high capacity and complementarity for peptides enrichment, and the SAX-MCM-41 nanoparticles has obviously high selectivity for acidic peptides with pI (isoelectric point) lower than 4. Large-scale enrichment of endogenous peptides in 2mg mouse liver extract was achieved by further combination of SCX-MCM-41 and SAX-MCM-41 with unmodified MCM-41 nanoparticles. On-line 2D nano-LC/MS/MS was applied to analyze the enriched samples, and 2721 unique peptides were identified in total. Two-dimensional analysis of MW versus pI distribution combined with abundance of the identified peptides demonstrated that the three types of nanoparticles have comprehensive complementarity for peptidome enrichment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enrichment of peptides from plasma for peptidome analysis using multiwalled carbon nanotubes.

Human plasma contains a complex matrix of proteolytically derived peptides (plasma peptidome) that may provide a correlate of biological events occurring in the entire organism. Analyzing these peptides from a small amount of serum/ plasma is difficult due to the complexity of the sample and the low levels of these peptides. Here, we describe a novel peptidome analysis approach using multiwalle...

متن کامل

Chemically-Modified Activated Carbon with L-Arginine for Selective Solid Phase Extraction and Preconcentration of Metal Ions

In this study, a new sorbent of chemically-modified activated carbon with L-arginine (AC-Arg) has been produced as solid-phase extraction, to trace Zn(II) and Cd(II) ions in real samples, including soil and water samples, by Flame Atomic Absorption Spectrometry (FAAS). Once the surface coverage value is determined, the surface modification has been investigated and assessed, while having em...

متن کامل

Surface Modified Cobalt Ferrite Nanoparticles with Cationic Surfactant: Synthesis, Multicomponent Dye Removal Modeling and Selectivity Analysis

Herein, magnetic cobalt ferrite nanoparticles (CFNPs) was synthesized and its surface was modified by cationic surfactant (cetyltrimethyl ammonium bromide: CTAB) and its potential to selective removal of dye from multicomponent (ternary) system was investigated. Direct red 31 (DR31), Direct green 6 (DG6) and Direct red 23 (DR23) were used as a model dyes. The characteristics of the synthesi...

متن کامل

Technologies and methods for sample pretreatment in efficient proteome and peptidome analysis.

Although great progresses have been made in proteomics during the last decade, proteomics is still in its infancy. Extreme complexity of proteome sample and large dynamic range of protein abundance overwhelm the capability of all currently available analytical platforms. Sample pretreatment is a good approach to reduce the complexity of proteome sample and decrease the dynamic range. In this ar...

متن کامل

Development of pH Sensitive Nanoparticles for Intestinal Drug Delivery Using Chemically Modified Guar Gum Co-Polymer

The aim of the research work was to chemically modify guar gum(GG) as a pH sensitive co-polymer and formulating intestinal targeting ESO nanoparticles (NPs) using the synthesized co-polymer. Poly acrylamide-grafted-guar gum (PAAm-g-GG) co-polymer was synthesized by free radical polymerization. Chemical modification of PAAm-g-GG by alkaline hydrolysis results in formation of a pH-sensitive co-po...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of chromatography. A

دوره 1216 8  شماره 

صفحات  -

تاریخ انتشار 2009